SIR ARTHUR LEWIS COMMUNITY COLLEGE

End of Semester Examinations Academic Year 2002-2003 - Semester One

Division of Agriculture
Associate Degree in Agriculture Course : Agriculture Mathematics AGM 511

Date: Wednesday, December 12, 2002.
Time: 9:00 am
Duration: 2 hours

Instructions: Answer all questions

1. (a) Evaluate without using calculators: $\log _{3}\left(81^{1 / 4} \times 9^{1 / 2}\right) /\left(3^{2} \times 27^{2 / 3}\right)$
(b) Write as simple quantities without negative indices:
(i) $1 / 8^{-2}$
(ii) $(1 / 2)^{-4}$
(iii) $3 a^{-2}$
2. Divide :
(i) $-8 h^{3} k^{3}-6 h^{2} k^{2}+2 h^{2} k^{4}-4 h^{4} k^{2} \quad$ by

(ii) $12 x^{2}-54 x+33$ by $3 x-11$
3. Simplify
(i) $\mathrm{x}-3-2\{2-3(\mathrm{x}-\mathrm{y})\}$
(ii) $[-(m+n)-(3 m-4 n)]-[(5 m-n)-(9 m-4 n)]$

Write as simple fractions:
(i) $5 /(4 \mathrm{c}+12)-4 /(2 \mathrm{c}+6)$
(ii) $(1 / a+2 / b) /(3 / 5 a+2 / b)$

(i) $24 a^{3}-80 a^{2}+24 a$
(ii $6 a^{2}-11 a-35$
(iii) $2 \log \mathrm{a}+2 \mathrm{x} \log \mathrm{a}$

6 (a) Given that $1 / p=1 / q-1 / \mathrm{f}$ Write an expression for \underline{f} in terms of p and q .
(b) solve the following: (i) $(x+3)^{2 / 3}=41 / 2$
(ii) $5^{(2 x+3)}=150$

(iii) $3 /(a+4)-7 / a=-6 / a$
(iv) $2 \mathrm{~m} / 3=8 /(\mathrm{m}+4)$
(v) $\log _{2 y} 36=2$

8 A stockman must supply a ration which is 14% crude protein by weight. $14 \% \mathrm{CP}$). He plans to use a concentrate mix which is 28% CP with bananas which is 4% CP. Best Use of the concentrate is made if each animal is fed a maximum 6 lb of ration per day. What is the optimum amount of concentrate he should supply to a batch of 20 growers per day.
9. Calcium ammonium nitrate is 27% nitrogen by weight and Magnesium Sulphate is 8.4% magnesium by weight. These fertilizer materials are used to supply nitrogen and magnesium respectively to a tomato crop. If the crop requires 184 kg of nitrogen and 18 kg of magnesium per hectare respectively, how much of each fertilizer material is needed to supply a green house measuring $9.6 \mathrm{~m} \times 24 \mathrm{~m}$.

